7 research outputs found

    Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty

    Get PDF
    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining ‘go-to-goal’, ‘avoid-obstacle’, and ‘follow-wall’ controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor’s nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone’s control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Synthesis and Characterization of Modified Kaolin-Bentonite Composites for Enhanced Fluoride Removal from Drinking Water

    No full text
    Fluoride-contaminated drinking waters are known to cause severe health hazards such as fluorosis and arthritis. This paper presents the encapsulation of iron oxide nanoparticles in kaolin-bentonite composites adsorbents (KBNPs) for the removal of fluoride from drinking water by adsorption compared with kaolin-bentonite composite (KB). Adsorbents with an average weight of ∌200 mg and ∌7 mm diameter (granules) were prepared in the ratio of 10 : 10 : 0.1 for kaolinite, bentonite, and magnetite nanoparticles, respectively. The granules were air-dried and calcined at 750°C and contacted with 2 mg/L sodium fluoride solution at varying time periods. The adsorbents were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) formulation, and Brunauer–Emmett–Teller (BET), whereas the adsorption mechanism and the kinetics were explained using the Langmuir isotherm, Freundlich models, and pseudo-first-order and pseudo-second-order models. The results showed that the BET surface areas for the granules were 10 m2/g and 3 m2/g for KBNPs and KB, respectively. The SEM images for the adsorbents before and after adsorption confirm the plate-like morphology of kaolin and bentonite. The FTIR analyses of bentonite (3550 cm−1–4000 cm−1) and kaolin (400–1200 cm−1) correspond to the structural hydroxyl groups and water molecules in the interlayer space of bentonites and the vibrational modes of SiO4 tetrahedron of kaolin, respectively. The KBNPs composites also recorded a fluoride removal efficiency of ∌91% after 120 minutes compared with 64% for KB composites without Fe3O4 nanoparticles. The adsorptions of fluoride by the KBNPs and KB granules were found to agree with the Freundlich isotherm and a pseudo-second-order kinetic model, respectively. The results clearly show that the impregnation of clays with magnetite nanoparticles has significant effect in the removal of fluoride, and the implication of the results has been discussed to show the impact of clay-magnetite nanoparticles composites in the removal of fluoride from contaminated water

    Prevalence and predictors of premarital sexual intercourse among young women in sub-Saharan Africa

    No full text
    Budu E, Seidu A-A, Armah-Ansah EK, et al. Prevalence and predictors of premarital sexual intercourse among young women in sub-Saharan Africa. Reproductive Health. 2023;20(1):1-11.INTRODUCTION: Premarital sexual intercourse (PSI) without adequate information and/or appropriate application of the relevant knowledge about sex before marriage, potentially has adverse effects on the sexual and reproductive health outcomes of vulnerable young women in sub-Saharan Africa (SSA). This study sought to examine the prevalence and predictors of PSI among young womenaged 15-24 in SSA.; METHODS: Nationally representative cross-sectional data from 29 countries in SSA were extracted for the study. A weighted sample size of 87,924 never marriedyoung women was used to estimate the prevalence of PSI in each country. A multilevel binary logistic regression modelling approach was used to examine the predictors of PSI at p<0.05.; RESULTS: The prevalence of PSI among young women in SSA was 39.4%. Young women aged 20-24 (aOR=4.49, 95% CI=4.34, 4.65) and those who had secondary/higher educational level (aOR=1.63, 95% CI=1.54, 1.72) were more likely to engage in PSI compared to those aged 15-19 and those with no formal education. However, young women who belonged to the Islamic religion (aOR=0.66, 95% CI=0.56, 0.78); those whowere working (aOR=0.75, 95% CI=0.73, 0.78); belonged to the richest wealth index (aOR=0.55, 95% CI=0.52, 0.58); were not exposed to radio at all (aOR=0.90, 95% CI=0.81, 0.99); were not exposed to television at all (aOR=0.50, 95% CI=0.46, 0.53); resided in rural areas (aOR=0.73, 95% CI=0.70, 0.76); and those who were living in the East African sub-region (aOR=0.32, 95% CI=0.29, 0.35) were less likely to engage in PSI compared to those who were traditionalist, unemployed, belonged to the poorest wealth index, exposed to radio frequently, exposed to television frequently, resided in urban areas, and lived in the Southern Africa sub-region, respectively.; CONCLUSION: Sub-regional variations in the prevalence of PSI exist amidst multiple risk factors among young women in SSA. Concerted efforts are required to empower young women financially, including education on sexual and reproductive health behaviors such as the detrimental effects of sexual experimentation and encouraging abstinence and/or condom use through regular youth-risk communication advocacy. © 2023. The Author(s)
    corecore